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1 Executive Summary 

The aim of this report is to present the process of calibrating a simulation model for the Madrid 
case study building, and using the calibrated model to estimate its annual energy demand 
before and after renovation. The text includes a description of the methodology EURAC has 
developed for this project, a discussion of the calibration process results and the extrapolation 
of yearly building and energy system behaviour. The results include the parameters that 
characterize the building models, annual demand estimations for the building and HVAC 
system pre and post-retrofit, and a discussion of how the practice of building model calibration 
can be improved. 

The calibration process methodology adapts already existing calibration studies found in 
literature [1], [2] and adds new features for the extrapolation of the building behaviour from two 
dwellings to the whole building and through one whole year.  

The effectiveness of a calibration process depends on the monitoring data and inputs given to 
the numerical model. For this reason, the developed methodology includes also some 
recommendations when a new monitoring system is designed. 

The presented methodology starts with the definition of the building model with information 
coming from an energy audit. In this phase, some assumptions are needed, especially for the 
variables related to the occupantsô behaviour or, in some cases, related to the building 
construction. In this way, the initial model is individuated and a first estimation of the building 
demands is calculated: around 90 kWh/m²y of space heating demand and 38 kWh/m²y of 
cooling demand for the whole building.  

The second step of the methodology concerns the analysis of monitored data in terms of 
available measurements, reliability of the data and elaboration for being used during the 
calibration process. Over the ten apartments, only three of them had a monitored system 
installed. Within these, only two include information on heating demand, since butane tanks 
were used for heating of the third dwelling. 

During the first phase, several uncertain variables can be found. In order to facilitate the 
calibration process, a sensitivity analysis helps to individuate the most influencing parameters. 
Outcome of the sensitivity analysis is that internal set temperature is the most influencing 
parameter. After that, number of occupants, infiltration ratio, temperature of the neighbour 
apartments, wall construction characteristics, window quality and shading control also affect 
the assessment of the building demands. 

The ensuing step of the methodology includes the definition of the ranges of the uncertain 
parameters individuated during the sensitivity analysis, the identification of the calibration 
criteria, the formulation of the optimization problem and the optimization itself using GenOpt. 
Since calibration on an energy model is mostly an ill-posed problem, a regularization term has 
been added to the cost function of the optimization. The quality of the model calibration has 
been determined by applying the standard ASHRAE metrics, monthly Normalized Mean Bias 
Error (NMBE) less than ±5% and monthly Coefficient of Variance of Root Mean Square Error 
(CVRMSE) less than 15%. 

Per ASHRAE recommendations, five calibrated models were identified for each dwelling. 
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The NMBE for F1/D1 model before renovation ranged between 4.07% and 4.92%, while the 
CVRMSE was between 4.52% and 5.4%. These values for F4/D1 were between 0.22% and 
0.98% (NMBE), and 0.68% and 1.34% (CVRMSE).  

From the calibration of apartment F4/D1, the external surface characteristics have been re-
defined. These values have been then used in the model for the F1/D1. In apartment F4/D1, 
all the final 5 models came out with a low-quality window, shading fraction around 80% 
activated when internal temperature is around 28°C. Two levels of infiltration and ventilation 
ratio have been identified distinguishing the closed (ratio between 0.2 and 0.28 vol/h) and the 
open period (ratio between 1.0 and 1.5 vol/h). 

Calibration of apartment F1/D1 resulted in higher than the standard neighbour temperature 
(average between the different models around 23°C); window with low quality, number of 
occupants around two, and three different infiltration and natural ventilation values depending 
on the period of the year (heating-time, swing period or summer-time). In this dwelling, the 
infiltration plus ventilation ratio for the closed-window period ranges between 0.2 and 0.4 vol/h; 
between 0.57 and 0.73 vol/h for the swing period and between 1.75 and 2.2 vol/h for the 
summer period. 

The reliability of the calibration phase is proved through a validation phase. It consists of 
running a simulation with the obtained parameters and calculating the errors as seen 
previously. In this case, the comparison of the simulated results is done with a new set of 
monitored data. If the errors stays within the admitted variance, the model can be considered 
calibrated. 

The development of this methodology has underlined how results of a model calibration are 
highly sensitive to the availability of accurate measured data. For any building model 
calibration, there is always a large number of parameter sets which return a calibrated model. 
To ensure valuable simulation results, the number of possible models must be reduced by 
correctly identifying the most important inputs. In particular, the most important values to 
monitor are the indoor air temperature of the calibrated dwelling, the indoor air temperature of 
the neighbouring dwellings, and obtaining a detailed description of each window in the building. 
The internal gains in the dwelling, and u-value of all walls are also very important, though 
obtaining that information is significantly more difficult. Additionally, more advanced 
component models describing occupant behaviour and infiltration would improve results.  

The methodology has also been developed in order to be able to assess the energy demand 
along one year of the entire building starting from few months of monitored data of only some 
apartments. In this sense, starting from the available data, a set point temperature profile has 
been developed as a function of external temperature. This assumption has allowed to define 
one of the most influencing parameters with a good approximation. 

For the infiltration ratio during the year, two different infiltration plus ventilation models have 
been developed depending on cooling system being present in the apartment or not. If there 
was cooling equipment in the apartment, a schedule of window opening has been identified as 
a function of occupancy and outside air temperature. In those cases where there is no cooling 
system three constant values have been assumed depending on the period of the year: winter, 
summer and swing season. Identification of each period is based on the internal and on the 
external air temperature. Depending if a dwelling had a cooling system or not, same infiltration 
and shading control and parameters of F4/D1 or F1/D1 were assumed. 

Analysing tenantsô bills and monitoring data, the calibration procedure has been applied to 
identify typical set-point temperatures of monitored dwellings to match the monitored indoor 
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air temperature, and of non-monitored dwellings such that they match the consumption 
reported in the utility bills. Once these profiles were defined, the yearly heating and cooling 
demands for the whole year of the two dwellings under typical occupant heating and cooling 
set-points have been assessed in a simulation using reference year weather data. 

Another considered scenario was annual prediction using the calibrated models with standard 
heating and cooling set-points (19.7°C for winter season and 25°C for summer season). Here 
it was estimated that the Madrid demo case building uses around 75 kWh/m²y of heating 
demand and 34 kWh/m²y of cooling demand. Comparing these results with the ones before 
calibration, it can be notices that the space heating demand was overestimated by 20% while 
the cooling demand of 10% as it is less influenced by the building structure. 

Same procedure adopted for the pre-renovation building model has been applied to the post-
retrofit building model in order to assess the savings that can be obtained through the 
renovation measures.  

As a result, under standard comfort conditions (19.7°C for the winter season and 25°C for the 
summer time), the in-between dwelling (F1/D1) has a heating demand of 27 kWh/m²y and a 
cooling demand of 27 kWh/m²y. The apartment on the top (F4/D1), instead, has higher heating 
demand, 32 kWh/m²y and higher cooling demand, 34 kWh/m²y. The resulting demands along 
the year for heating and cooling for the whole building are 28 kWh/m²y and 33 kWh/m²y, 
respectively. 

The final energy consumed by the existing system has been calculated with constant efficiency 
values for the boiler and split units (where present), while the consumption of the renovated 
HVAC system has been calculated after model calibration. 

Table 1 summarizes the annual energy demands for space heating and cooling of the two 
monitored dwellings and estimates for the whole building; before (Pre-R) and after (Post-R) 
renovation, once using standard heating and cooling set-points (19.7°C for heating and 25°C 
for cooling), and once using typical heating and cooling behaviour of the occupants (monitored 
and from bills).  

 

Table 1. Annual energy demands of the two monitored dwellings and for the entire building, before (Pre-R) and 
after (Post-R) the renovation, with standard (19.7°C in winter and 25°C in summer) and typical (defined from 

monitoring) set point temperatures. 

 F1/D1 F4/D1 BUILDING 

[kWh/m²y] Heating Cooling Heating Cooling Heating Cooling 

Standard set-points / Pre-R 85.6 26.8 120.7 34.2 75.3 33.8 

Typical set-points / Pre-R 46.3 - 168.6 7.5 100.9 10.8 

Monitoring Pre-R 33.5 - 123.2 24.5 - - 

Standard set-points / Post-R 26.7 26.8 32.8 33.6 27.6 32.5 

Typical set-points / Post-R 28.7 18.9 29.2 18.1 41.9 24.8 

Monitoring Post-R 16.1 - 51.4 - - - 

 

The indoor comfort after the retrofit has increased in both heating and cooling periods: in 
heating season, indoor air temperature has increased on average by 1.2°C, and in the cooling 
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season decreased of 3.1°C. However, even under these improved heating and cooling set-
points (typical set-points), the heating demand of the entire building after the retrofit has 
decreased from 101 kWh/m²y to 42 kWh/m²y. Cooling demand of the building has increased 
from 11 kWh/m²y to 25 kWh/m²y post-retrofit, due to much better indoor comfort. Note also 
that the monitoring data corresponds to the monitoring year 2015-2016, which is in general 
warmer than the reference year used in the simulations, and therefore results in lower heating 
demand, and larger cooling demand. 

The data on annual energy consumption is presented in Table 2 for the two monitored 
dwellings and the whole building, as reported in the utility bills over three years. The data from 
the utility bills corresponds to three years which were warmer than reference year used in 
simulations. Final energy consumption of the single apartments is not reported as the HVAC 
system after renovation is centralized. 

 

Table 2. Annual Final Energy of the two monitored dwellings and for the entire building, before (Pre-R) and after 
(Post-R) the renovation, with standard (19.7°C in winter and 25°C in summer) and typical (defined from 

monitoring) set-point temperatures. 

 F1/D1 F4/D1 BUILDING 

[kWh/m²y] Heating Cooling Heating Cooling Heating Cooling 

Standard set-points/ Pre-R 107.0 10.7 150.9 13.7 94.1 13.5 

Typical set-points  / Pre-R 57.9 - 210.8 3.0 126.1 4.3 

Bills Pre-R 76.5 - 167.8 11 123.0 13.0 

Standard set-points / Post-R - - - - 7.6 8.8 

Typical set-points / Post-R - - - - 10.7 6.9 

 

Table 3. Annual Primary Energy of the two monitored dwellings and for the entire building, before (Pre-R) and 
after (Post-R) the renovation, before and after the calibration 

 F1/D1 F4/D1 BUILDING 

[kWh/m²y] Heating Cooling Heating Cooling Heating Cooling 

Standard set-point / Pre-R 127.9 26.4 180.3 33.6 112.5 33.3 

Typical set-point / Pre-R 69.2 - 251.9 7.4 150.7 10.6 

Standard set-point / Post-R - - - - 18.7 21.8 

Typical set-point / Post-R - - - - 26.5 17.0 

 

Table 3 summarizes primary energy used for space heating and cooling obtained from the 
values in Table 2. The total primary energy before the retrofit was 112 kWh/m²y for space 
heating and 33 kWh/m²y for cooling. After the retrofit, primary energy is 19 kWh/m²y for space 
heating and 22 kWh/m²y for cooling, where we assumed standard heating and cooling set-
points. Assuming typical heating and cooling set-points, primary energy for heating after the 
retrofit reduces from 151 kWh/m²y to 27 kWh/m²y, and for cooling it increases from 11 kWh/m²y 
to 17 kWh/m²y. 
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The energy use for domestic hot water preparation has not been considered so far, as the 
demand is estimated to remain the same before and after the retrofit: 19 kWh/m2y. Following 
this, total energy consumption of gas boilers before retrofit was around 150 kWh/m2y for typical 
and 120 kWh/m2y for standard set-points. The centralised heating system electricity 
consumption after retrofit is estimated in 22 kWh/m2y and 21 kWh/m2y for typical and standard 
set-points respectively. This latter value also results in primary energy consumption of about 
55 kWh/m2y for typical and 53 kWh/m2y for standard set-points. 

The total primary energy consumption of the building before renovation ranges in between  
190 kWh/m2y and 177 kWh/m2y, which means savings of 135 and 135 kWh/m2y after retrofit 
(depending on standard and typical space heating and cooling set points). 
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2 Introduction 

This report describes the developed procedure to identify the annual demand of the demo case 
in Madrid and to give a plausible estimate for retrofit energy savings. For this purpose, 
monitoring data was available for three out of ten dwellings for fourteen months before the 
retrofit (Aug 2014 ïSep 2015), and twelve months after the retrofit has started (Oct 2015ðSep 
2016), as well as partial utility bill data for eight dwellings (for 2012, 2013, 2014). Due to the 
limitations of monitoring data, a well-calibrated simulation model was essential to estimate the 
annual space conditioning load in the whole building, both before and after the retrofit. Based 
on the available data, an energy building model was calibrated and validated.  

Model calibration has recently become a major research topic, due to its potential to reduce 
the error of simulation model predictions, thus making simulation models more reliable. Several 
strong arguments in favour of calibration exist in the literature. In [3] and [4], the authors have 
observed that simulation predictions of energy consumption in newly constructed buildings 
often significantly differ from actual use, mostly due to assumptions and simplifications of the 
energy models. Moreover, they argue that model calibration can substantially reduce these 
errors. Further, in [5] and [6] the authors state that calibrated simulation models can even be 
effectively used for fault detection diagnostics and load control predictions, among other 
possible applications. Another use is in retrofit assessment, e.g. presented in [7], where a 
simulation model is utilized in an optimization problem to select the most cost-effective retrofit 
measures and improve the overall performance of the building. Also for this application, a well-
calibrated energy model is essential. 

Due to indisputable advantages of energy model calibration, a large effort has been made in 
the industry over the last decade, to introduce standard protocols and criteria for building model 
calibration, e.g. [1], [8], [9], [10] and [11] to name just a few. In [1], a step by step protocol has 
been developed: including collecting building data, performing a sensitivity study for 
identification of significant parameters, varying the parameters to match the measured data, 
and identifying the remaining uncertainty in energy conservation measure (ECM) predictions. 
Additionally, it is recommended to identify multiple credible calibrated models and to use them 
to identify the range of possible savings from intended ECMs. A good overview of the existing 
methods can be found in [12]. 

Despite this progress, some noticeable challenges remain in the field of building simulation 
calibration. It is important to note that, the calibration of a building model is an underdetermined 
problem [1]. As a result, it is usually much easier to create a model that matches the measured 
data than it is to identify a model that correctly emulates the building [2]. Therefore, one of the 
common challenges is to find appropriate additional criteria in order to make a selection 
between many identified models which satisfy the standard calibration criteria, and retain those 
which make a good representation of the actual building. In addition, most of the methods 
available in the literature deal with calibration of the commercial or public buildings. Calibration 
of energy models for residential buildings is often much more complex, since there is no 
building management system or some other kind of regulation of the set-point temperature, 
and monitoring data are often partial. In this report we present developed methods to deal with 
these and other encountered challenges. 

Chapter 3 presents the developed methodology in all its aspects: sensitivity analysis which 
identifies which parameters most strongly impact the model; optimization problem, process of 
developing a cost function, choice of the optimization algorithm and results of the calibration; 
challenges of calibrating models, how they impact the results, and how those challenges can 
be overcome in the future.  
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Chapter 4 reports the results of this methodology applied to the case study. As monitored data 
refers to a smaller period than one year and only to two over ten apartments, Chapter 5 shows 
how yearly energy demands for the whole building are extrapolated. Chapter 6 applies the 
same methodology to the building model after renovation and shows the results. Chapter 7, 
finally, extrapolates the heating and cooling demands of post retrofit along one year and 
calculates the assessed savings. 

2.1  Problem description  

This research has been performed as a part of the iNSPiRe project, focusing on the multi-
family building demo case in Madrid. The main goal of the case study is to estimate the energy 
savings after performing an extensive retrofit on the building.  

Starting from August 2014, monitored data was collected for three out of ten dwellings before 
and after the retrofit, and starting from April 2016, extended monitored data was collected for 
all occupied dwellings (eight of ten). In addition, partial utility bill data for eight dwellings were 
available. One of the monitored dwellings does not include information on heating demand, 
since butane bottles were used for heating. Since collected data is partial, it is inadequate to 
directly identify the space conditioning load of the whole building. To overcome this issue, the 
available data was used to calibrate a simulation model of the two dwellings before and after 
the renovation. This result was used to develop a model for the whole building and to quantify 
the pre- and post-retrofit consumption. 

The building energy model for this study has been developed in TRNSYS 17 [13], a commercial 
software environment used to simulate the behaviour of transient systems. TRNSYS is often 
used to model complex multi-zone buildings since it complies with the requirements of 
ANSI/ASHRAE Standard 140-2001 and meets the general technical requirements of the 
European Directive on the Energy Performance of Buildings. For this reason, it can be utilized 
for compliance with the directive's implementations in various EU countries. The energy 
consumption of a building is calculated by numerically solving the system of dynamic heat 
balance equations for a specified time step and over a given simulation period. 
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3 Simulation model calibration methodology 

Model calibration is currently a major topic in the building energy simulation community. The 
reason for this is obvious; simulation models are estimations and, unless they are calibrated, 
accuracy and usefulness of the simulation results cannot be guaranteed. Recent research 
efforts have tried different methodologies for calibrating simulation models. Zheng OôNeill and 
Bryan Eisenhower focused on analysing the uncertainty of each input, propagating the 
uncertainty through the model, and using the results to calculate a reduced order meta-model 
[6]. Massimiliano Manfren et.al. used a similar strategy, with a very thorough focus on the 
different types on the different statistical methods available [14]. Youngjib Ham and Mani 
Golparvar-Fard developed a method they call Energy Performance Augmented Reality (EPAR) 
where they use thermal imagery and computational fluid dynamics (CFD) models to assist in 
the calibration of whole-building energy models [15]. Antione Caucheteux and Emma Stephan 
performed a study calibrating a simplified numerical model for an old building by identifying the 
most influential parameters, and adjusting them as needed to match experimental data [2]. 
Finally, Agami Reddy et al., present a thorough overview and evaluation of the calibration 
methods existing in the literature [1].They have developed a step by step protocol including 
collecting building data, performing a sensitivity study to identify the most important 
parameters, varying the parameters to match the measured data, and identifying the remaining 
uncertainty in energy conservation measure (ECM) predictions. 

Several studies have experimented with different calibration processes in different situations. 
In [16], the authors performed a calibration on a historical building, with no heating or cooling 
equipment, and analysed the importance of different parameters. Several studies calibrating 
commercial buildings, using various methods, have been performed in [17], [18], [6], [3], and 
[19]. In [17], Tahmasebi used GenOpt [20], and a two-term, weighted cost function to calibrate 
an EnergyPlus [21] model of a building on campus at the Vienna University of Technology. 
Lam et al. used data mining algorithms, and measured data from the building automation 
system to identify the behaviour of occupants when calibrating an EnergyPlus model of an 
office [18]. OôNeill et al. proposed using version control to track each change made in a building 
model, along with the specific evidence used to justify that change [6]. Raftery et al. proposed 
a method of identifying the most influential parameters in models of complex HVAC systems, 
thereby reducing the computation time required to calibrate the model [22]. Liu et al. developed 
a calibration protocol for HVAC systems using two weeks of data, which met the calibration 
criteria when validated against one year of building operation [19]. Others, including [2], have 
developed methods of creating and calibrating simplified models, or statistical models. 

However, the criteria used to decide that a model is well-calibrated is still somewhat unclear. 
On one hand, the model uncertainty is based on the fact that simulation model calibration is 
an underdetermined problem; typically there is not enough available data to correctly identify 
every parameter [1]. The direct result is that, in most calibrations, there are multiple 
combinations of parameters which will all yield a calibrated result. On the other hand, it is clear 
that more effort needs to be invested in how to take full advantage of the information obtained 
from high-frequency measurements in residential buildings [23]. Parameter uncertainty is 
primarily an issue when using the simulation model to estimate savings from a building energy 
retrofit; the parameters used for the model pre-retrofit impact the energy savings from the 
retrofit. To approximate the error caused by this problem, ASHRAE recommends identifying 
more than one different calibrated models, and using the predictions from each model to 
identify the likely range of energy savings from the retrofit. A specific model is typically 
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considered calibrated if the monthly normalized mean bias error (NMBE) is less than 5% and 
coefficient of variance of root mean square error (CVRMSE) is less than 15% [10]. 

 

For the calibration performed in this work, the methodology as presented in [2] was adapted. 
Our method consisted of the following steps: 

1. Initial energy simulation model and parameter uncertainty. Initial uncalibrated model 
is developed based on the energy audit and on the description of the building. At this initial 
phase of calibration, an expert is required to make an initial reduction of parameter space 
by identifying those parameters which could be influential for energy use of the building. 
He is also required to make an initial guess and a realistic interval for the value of each 
parameter.  

2. Monitoring data analysis and iterative model update. Based on monitoring data, 
boundary conditions for the simulation model are created, and the model is iteratively 
modified until it is possible to realistically match the monitored data. 

3. Sensitivity study. The sensitivity study is performed to identify those parameters which 
have strong influence on the simulation model output, leading to reduction of the 
parameter space.  

4. Calibration phase. In this step, an optimization problem is defined and solved. It consists 
of choosing an adequate cost function and an optimization algorithm. The cost function 
should quantify the simulation error with respect to monitoring data. Moreover, the cost 
function should in general incorporate the calibration criteria in some form. Choice of the 
optimization algorithm should ensure sufficient exploration of the parameter space.  

5. Validation phase. Model validation is performed against monitoring data which were not 
used in the calibration procedure in order to evaluate the ability of the calibrated model to 
correctly capture the behaviour of the system. 

6. Failure to calibrate the model. In case that the model does not meet the calibration 
criteria using the identified parameters indicates that there is a problem with the model. It 
could be that there is a mistake in the model development, an influential parameter was 
left out of the calibration, or some part of the model was not detailed enough (E.g. a 
constant infiltration flow rate instead of a detailed, occupant behaviour based infiltration 
model, shading model, etc.). In this case, the model needs to be reviewed and modified, 
and the calibration process proceeds from step 4. 

 

This method is shown schematically in Figure 1, and these steps will be studied in more detail 
in the following subsections. 

The proposed methodology follows a procedure well-established in the literature, with a few 
adaptations. As opposed to [1], where first a blind global search and then a guided local search 
is performed, we start by global guided search of the parameter space with a goal to reduce 
the total number of performed simulations (sensitivity analysis). Further, while it has often been 
noted in the literature that calibration of an energy model is an underdetermined problem, up 
to date there is no clear methodology to deal with this issue. In our approach, we suggest 
introducing a regularization term to our cost function to avoid a common non-uniqueness of 
the solution phenomenon typical when solving inverse problems. This will be discussed in 
paragraph 3.1.3. Finally, we suggest performing validation of the model against new set of 
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monitoring data. This step, although fundamental in any modelling process, is often ignored in 
the context of energy simulation models. 

 

 

Figure 1. Madrid Calibration Methodology 

3.1  Initial energy simulation model and parameter uncertainty  

The building in question is an apartment building located in Madrid, which was built in 1960 
and initial estimate of annual conditioning and DHW load is 158 kWh/m2y. It has five floors, 
with two 50 m2 dwellings per floor. The building is attached to another apartment building on 
the east side, while the other three sides are exposed to the ambient conditions (right building 
in Figure 2). Notations for the dwellings are introduced based on their location in the building. 
All the dwellings have a residential use, and are composed of 3 bedrooms, kitchen, living room 
and a bathroom. 
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Figure 2: Image of the Madrid Demo Case Building 

 

 

Figure 3: Layout of Demo Case Building and Dwelling Notation 

 

The three monitored dwellings are denoted by F1/D1, F3/D1 and F4/D1 in Figure 3. Dwelling 
F1/D1 is on the first floor of the building and has a gas boiler for heating, but no cooling 
equipment. Dwelling F3/D1 is on the third floor and it has a gas boiler with butane bottles for 
heating, therefore heating demand could not have been monitored. F4/D1 is on the top floor 
of the building and has both a gas boiler for heating and two electric heat pumps for cooling. 
Two occupants were reported for F1/D1, five for F3/D1 and three for F4/D1. All additional 
information on buildingôs cross section, buildingôs use, envelope characteristics, energy flows 
and technical installations can be found in D 7.1b Energy Audit [24]. 
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3.1.1 Building construction parameters 

The specifications on the building envelope (layers, dimensions, characteristics, openings) and 
the building plans are taken as reported in [24]. Still, some information are uncertain or missing 
and will be taken as the unknown model parameters in the calibration process 

Wall construction characteristics coming from the Energy Audit are report in the following table: 

 

Table 4. Wall construction characteristics for the case study 

SURFACE THICKNESS 

[cm] 

U-VALUE 

[W/(m²K)] 

External wall North-South 35 1.51 

External wall East-West 32 1.57 

Roof 68.5 1.51 

Ground floor 227 0.65 

Internal floor 54 2.19 

Internal partition between dwellings 28 2.11 

Internal partition within dwellings 7 3.14 

Adjacent wall with the other block 25 1.54 

 

3.1.2 Occupancy parameters 

Further, there are model parameters which describe the occupancy, and in contrast to 
construction parameters, they are time-dependent and also stochastic, meaning that they 
cannot be predicted, but only a guess can be made based on the statistical analysis of the 
measurements and energy audit. Occupancy profiles specify what is the internal gain per 
person in the dwelling during each hour of the day during the week (Occ_Week), on Saturdays 
(Occ_Saturday), and on Sundays (Occ_Sunday), where occupant internal gains of 70 
W/person was assumed. The starting point for the profiles were as identified during the building 
energy audit [24]. There are separate electric gain schedules for the week (El_Week), and the 
weekend (El_Weekend). These schedules can be found in Table 5.  

 

Table 5: Internal Gains and Occupancy Profiles  

 

 

Further, the internal gain in each dwelling should then be multiplied by the reported number of 
occupants in each of the dwellings (see Table 6). 

 

Schedule

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

El_Week [W/m2] 2.6 2.1 2.36 2.36 2.04 1.89 2.11 2.89 3.71 3.71 3.8 3.68 4.11 4.21 4.42 4.21 3.27 3.92 4.91 6 6.2 5.69 4.54 3.54

El_Weekend [W/m2] 2.74 2.74 2.74 2.74 1.82 1.78 1.78 1.97 2.62 0.86 4.63 5.46 6 5.48 5.48 4.85 4.57 4.7 5.45 6.11 6.02 5.35 4.36 3.45

Occ_Week [people] 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1

Occ_Saturday [people] 1 1 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1

Occ_Sunday [people] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Time [h]
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Table 6. Number of occupants per dwelling 

  

Floor 

F0 F1 F2 F3 F4 
B

lo
c
k 

D1 2 2 1 5 3 

D2 2 2 0 0 1 
 

3.1.3 Heating and cooling system modelling 

Finally, there remains the modelling of the heating and cooling system. A major problem is that 
we do not have any specification on the installed gas boilers, and it is also impossible to know 
the heating set-point which has been used in the dwellings. The omission of the set-point 
temperature in the monitoring data is a major drawback when wanting to model and simulate 
building energy behaviour.  

As starting point, the non-calibrated model has been simulated with standard set temperatures 
values, which is 20°C for the winter season and 25°C for summer. 

3.2  Monitoring data analysis  

Data measurement was a major aspect of the case study [25]. Available pre-retrofit 
measurements for the three dwellings span from 5 August 2014 to 1 September 2015. This 
data are used for the calibration of the simulation models for the dwellings, by creating 
boundary conditions for the model and then matching simulated and monitored demand. The 
monitoring was continued also after this date, but due to the retrofit activities, these 
measurements were not suitable for calibration. The data can be divided into indoor and 
ambient measurements. All measurement points have a sampling frequency of fifteen minutes. 
Available data including measurement resolution are stated in Table 7 and Table 8. The 
heating and DHW demand were measured by heat meters on the DHW and on the heating 
pipelines.  

 

Table 7. List of available indoor measurements and data resolution pre-retrofit 

Indoor measurements Data Resolution 

Room temperatures [°C] 0.1 °C 

Heating demand [kWh] 1 kWh 

Indoor CO2 concentration [ppm] 10 ppm 

DHW demand [kWh] 1 kWh 

DHW temperature [°C] 0.01 °C 

Internal relative humidity [%] 1 % 

Electric meter [kWh] 0.1 kWh 

 

Space temperature data, CO2 concentration and relative humidity measurements were 
collected in four separate rooms within each dwelling.  
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Table 8. List of available outdoor measurements and data resolution pre-retrofit 

Outdoor measurements Data Resolution 

External temperature [°C] 0.01 °C 

Global radiation [W/m2] 0.1 W/m2 

Diffuse radiation [W/m2] 0.01 W/m2 

External relative humidity [%] 0.01 % 

 

Figure 4 shows room temperatures and total space conditioning demand for dwellings F1/D1 
and F4/D1 for the period of one year from 1 September 2014 to 1 September 2015. The 
temperatures displayed in Figure 4 are the measurement averages over four different rooms 
in each dwelling. While the total demand of F1/D1 consists only of heating demand 
(represented by purple line), the demand of F4/D1 consists of both heating and cooling 
demand (represented by yellow line). The cooling demand of the dwelling was estimated based 
on the electricity meter, which will be discussed in Subsection 3.2.  

 

 

Figure 4: One year measurements (Sep 2014 ïSep 2015) for the temperature and total cumulative space 
conditioning demand for dwellings F1/D1 and F4/D4. 
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From Table 9 it can be seen that the total demand differs largely between the two dwellings, 
which is mostly due to the occupant set-point temperature regulation (notice that the heating 
set-point temperature in F1/D1 is lower than in F4/D1, and that the dwelling on the last floor 
has more heat losses that the one on the first floor). This results in more than four times smaller 
heating demand. Identification of heating set-point will be studied in more detail in Subsection 
5.1.1. 

From the measured data it can also be noticed that there are short periods where the 
communication between the sensors and the data logger was fully or partially lost. For 
instance, observing it appears that the heating load sensor in the dwelling F1/D1 stopped 
communicating with the data logger from hour 8514 to hour 8938. Communication issues and 
their consequences are studied in more detail in Subsection 3.4.2. The recorded heating 
demand and the estimate of the cooling demand for the period 1 September 2014 to 1 
September 2015 and average indoor air temperature (IAT) during both heating and cooling 
periods for dwellings F1/D1 and F4/D1, are given in Table 9. 

 

Table 9: Annual conditioning Load and Indoor Air Temperature for heating and cooling periods 

Dwelling 
Estimate Cooling 
 (kWh) 

Heating 
 (kWh) 

Average Heating 
 IAT (°C) 

Average Cooling IAT 
(°C) 

F1/D1 N/A 1680 18.42 N/A 

F4/D1 1227.28 6160 21.53 30.46 

 

 

Figure 5: Average CO2 concentration during 180 days of the measurement period (Aug 2014 ï Feb 2015) 

 
Measured CO2 concentration has proven very useful when identifying occupant presence and 
for detection of opening of the windows. Figure 5 shows the daily average of the measured 
indoor CO2 concentration in both dwellings from 5 August 2014 to 15 February 2015. CO2 
concentration is mostly influenced by ventilation rates and occupancy. In Figure 5 we notice 
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distinctly different behaviours in the three seasons: summer, fall, and winter. Specifically, the 
CO2 concentrations 1) are lower in the summer when the windows are open more often, 2) 
gradually increase in the autumn as the occupants respond to lower outdoor temperatures by 
closing the windows more often, and 3) are generally elevated in the winter, when the windows 
are closed almost constantly. While the concentration patterns in the two dwellings are similar, 
there is one distinct difference. The CO2 concentration in F4/D1 is generally higher than in 
F1/D1 in the summer, likely because of the presence of cooling equipment and hence the 
windows are kept closed more often. The CO2 concentration will be studied again in more 
detail in Chapter 4. 

3.3  Sensitivity Analys is 

In this subsection, we describe the global sensitivity analysis method which was applied for 
the considered energy simulation model. The results of the analysis for the dwellings F1/D1 
and F4/D1 are presented in Chapter 4.  

Performing a sensitivity analysis (SA) is very important and should be done carefully when 
calibrating a model, especially when dealing with a complex, strongly non-linear model with 
many parameters. SA is the key for parameter space reduction, through elimination of 
negligible model parameters. It allows us to understand not only how strongly does each 
parameter affect the model output, but also how does the influence of one parameter change 
with respect to others. It can point out which model parameter may be considered negligible, 
linear and additive or non-linear, and if it is involved in interaction with other parameters [26]. 
ñOne-factor-at-a-timeò methods (OFAT) and derivative-based method are easily implemented 
and therefore often used in model calibration. However, they explore only a limited portion of 
the parameter space and the possibility that factors might interact is discounted. Also since 
derivative based approach considers only the linearized model, these methods might fail to 
provide the full effect of any given factor on the output [27]. Instead, a number of different 
approaches is suggested such as rationalized OFAT screening test, a regression-based 
method, and global quantitative sensitivity analysis measures (FAST and Sobolev sensitivity 
indices). An extensive overview of the existing sensitivity analysis methods can be found in 
[28], [29]. 
In this report, we apply the Morris method [27], also called elementary effects (EE) method 
which is particularly suitable when model simulation is computationally expensive and the 
number of model parameters is high. We denote a parameter vector by: 

ὴ ὴȟὴȟȣȟὴ ᶰ ὖḧ ὴȟ ȟὴȟ Ṗ ᴙ  

and a model output function by ώ ώὴȢ Here ὖ denotes the parameter space. The Ὦ  

elementary effect of ώ at distance  is defined as: 

Ὠ ὼ
ώὼ Ὡ  ώὼ

 
 

Here Ὡ πȟȣȟρȟȣȟπ denotes the Ὦ  unit vector. Next, a random parameter set ὴȟὯ

ρȟȣὶ Ṗὖ and an appropriate  π are chosen. Also, let ί ίȟίȟȣȟί  be randomly 
chosen such that ίᶰ ρȟρ, and ɆṒ ρȟȣȟὨ is a random permutation. 

Then, for each Ὧ ρȟȣȟὶ we perform Ὠ ρ function evaluations for the following Ὠ ρ 
parameters:  

ὴ 
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ὴ Ὡ ί 

é 

ὴ Ὡ ί Ễ  Ὡ ί 

Here, ὴ,  and ί should be chosen such that all of the above parameters lie in the parameter 
space. In total we perform (Ὠ ρ ὶ function evaluations and for each Ὦɴ ρȟȣȟὨ obtain ὶ 

elementary effects Ὠ ὴ , Ὧ ρȟȣȟὶ. Then we calculate 

‘  
ρ

ὶ
 Ὠ ὴ ȟ 

„  
В Ὠ ὴ  ‘

ὶ ρ
 

‘ᶻ  
ρ

ὶ
 ȿὨ ὴ ȿ 

The moment ‘ represents an average effect of the parameter ὴ, and a high value suggests 

dominant contribution of the Ὦ  factor on the function value. Non-linear and interaction 
effects are estimated with „. The moment ‘ᶻ of the absolute effects has been introduced in 

order to avoid cancelation effects which may appear in  ‘Ȣ 

It should be noted that method is an adaptation of OAT method, and as already mentioned 
does not allow for self-verification, in the sense that not all output variance is accounted for. A 
complementary quantitative method, like variance-based sensitivity methods (Fourier 
amplitude sensitivity test and Sobol sensitivity indices, see [28]) may be used in order to make 
up for this draw-back. However, we have not considered this in the present study. 

3.4   Calibration m etrics  and the optimization problem  

In this section, we define which calibration criteria to be used in the calibration process and 
define the optimization problem for finding the optimal parameter sets. 

 

3.4.1 Calibration criteria 

Chosen calibration metrics for the energy demand follow the ASHRAE guidelines. Using 
monthly data, the criteria for heating and cooling energy consumption were the following: 
Normalized mean bias error (NMBE) is less than ±5% and coefficient of variance of root mean 
square error (CVRMSE) is less than 15% [4]. These errors are calculated as follows: 

ὔὓὄὉ ρππ 
ώ  ώ

ώ ὲ ρ
 

ὅὠὙὓὛὉ ρππ 
ώ  ώ

ώ ὲ ρ
 

Here ώ  is the average measured model output. If calculated on an hourly basis, the 
recommendation is NMBE less than ±10% and CVRMSE less than 30%. Because data was 
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recorded at fifteen-minute intervals, ideally we would use the hourly CVRMSE as the 
calibration criterion. However, since our data had a resolution of 1 kWh and an average heat 
rate of less than 0.5 kW, the hourly CVRMSE could not be calculated correctly. However, 
having calibration criteria only on monthly basis, it may happen that the calibration problem is 
strongly under-determined, and that model parameters for which the calibration criteria is 
satisfied vary drastically from model to model. Models calibrated only on a single performance 
indicator such as energy consumption, can be significantly unreliable regarding model 
parameters and other performance indicators [16], [30]. This also results in a large deviation 
in the retrofit savings estimation for the demo case. This compromises the reliability of the 
retrofit savings and the estimation risk is high. The lack of reliability is in general not acceptable, 
especially from the perspective of the investors or residents who are willing to invest in energy 
conservation measures, since there is no guarantee that the cost of the retrofit is covered by 
its savings within reasonable time. In order to reduce the model uncertainty, it is necessary to 
introduce additional calibration criteria for the building model to exclude those predictions 
which do not represent the reality. It is well known that utilizing temperature as another control 
variable in building energy model calibration should in general be done carefully due to its 
complex and uncertain interaction with the indoor environment [31]. For residential buildings, 
the occupant behaviour does not follow in general a certain pattern, and can exhibit large 
deviations in the course of time. It is therefore practically impossible to represent it fully in a 
simulation model and hence certain modelling errors are unavoidable. However, calibrating a 
building model to match the measured temperature is in some cases the only option, as for 
example for buildings with no operating HVAC system [31]. In addition, calibration to 
temperature can help to eliminate those models which do not represent the real behaviour of 
the building, but which still meet the energy calibration criteria. This is particularly important 
when considering residential buildings/apartments where the order of consumption is low 
compared to the commercial buildings, while at the same time the resolution of the 
measurement devices is not large enough to capture it properly. In such cases the 
measurements are not sufficient to use hourly calibration criteria, since even comparing the 
correct (real) building data against the measurements would not satisfy the hourly criteria. It is 
therefore clear, that in such cases there is a need to introduce additional criteria to make sure 
the model represents the building also on the smaller time scale. Another important reason 
why we wanted to achieve temperature calibration is that we can use the model simulation in 
summertime to estimate the cooling demand in the dwellings. The ASHRAE recommendation 
does not include any guidelines on model calibration criteria when the point of interest is the 
indoor air temperature instead of the energy demand. Table 10 shows the final chosen 
calibration criteria which will be used for the calibration of models. 
 

Table 10: Final Calibration Criteria 

Monthly 
NMBE (%) 

Monthly 
CVRMSE (%) 

Average absolute 
temperature error (°C) 

< ±5 < 15 < 1.5 

 

The criteria for the temperature error was chosen in this way, since the standard uncertainty 
for a Type T thermocouple with special limits of error wire is ±0.5°C [32]. This means that we 
had to assume any simulated value within ±0.5°C of the measured data was correct. We 
decided to set the acceptable simulation error predictions in line with the uncertainty of the 
temperature measurement. However, when heating is active, this temperature error is 
negligible. Therefore we consider only those non-heating periods for the temperature 
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calibration, since including also the heating periods would reduce total error and ñmaskò 
possible temperature prediction problems. 

 

3.4.2 Formulation of the optimization problem 

We will formulate and solve an optimization problem in order to identify parameter sets for 
which the corresponding energy models satisfy the calibration criteria given in Table 10. The 
cost function is defined as a weighted absolute error of model outputs summed over each 
simulation step. In our case, we are interested in the heating demand error and indoor 
temperature error: 

ὐὴ  ύ ὗ ȟ ὗ ȟ  ύ Ὕ ȟ Ὕ Ȣ  

Here ὗ ȟ  and ὗ ȟ  represent the total simulated and measured heat demand from 

first to ὰ  simulation step. The model needs to match the entire data set, not only at the final 
time step. Therefore, the cost function must be summed over the course of the simulation. 
Additionally, the absolute value of each term must be used to avoid errors in one time step 
cancelling the errors in another time step. 

The weights ύ  and ύ  are chosen in such a way that the error terms are well-scaled and 

more importance is given to that value which is the calibration priority, which in our case is the 

heating demand. We estimate that total temperature error is of order ὲ , a multiple of the 
number of simulations, and a rough estimate for the total demand error is 10% of the total 

measured heating demand. We can take ύ ρ, and ύ
ȟ

 as a good starting 

points and adapt these values if necessary.  

Moreover, we will also add a regularization term to the cost function with the goal to avoid the 
phenomenon that model parameters take uncontrollably large absolute values and/or reach 
interval limits because their effects on the model output have cancelled each other out. For 
this purpose, let the unknown building parameters be divided into two groups based on the 
amount of information available from the building plans, energy audit and modellerôs 
experience. First group can be called moderately uncertain parameters and it consists of all 
parameters for which we have a good initial guess, and we expect that by performing 
calibration this guess can be confirmed or slightly improved. Let the set of all these parameter 
be denoted by ὖ . We choose this initial guess as the starting point of our optimization. The 
rest of the parameters can be considered highly uncertain parameters, including all those 
parameters for which we donôt have a good guess but only a reasonable interval. For those 
set of parameters it is important to perform multiple optimizations with different initial guesses 
and make sure that the algorithms does a good exploration of the parameter space, in order 
to increase the chances to find the global minimum of the cost function. Regularization term is 
defined as: 

Ὑὴ ‗ 
ὴ  ὴ

ȿὴ ȿ
ύ  

ȿὴȿ

ρ
ςὴȟ  

ρ
ςὴȟᶱᶰ

 

 

Here, ὴ  is the initial guess of the modeler, and the summation terms are normalized such 

that they are well-scaled. Again, we have the opportunity to manually adjust the weighting 
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parameters for each parameter, based on our judgment on how certain we are with our initial 

guess: those parameters with higher certainty will also have a higher weight ύȢ 

Optionally, we can add another term to our cost function which describes the error at the last 
simulation step: 

ὒὛὴ ύ  ύ ὗ ȟ ὗ ȟ  ύ Ὕ ȟ Ὕ Ȣ  

With this term we can regulate how much more do we want our calibration to fit the measured 
data at the last step with respect to the rest. Finally, our regularized cost function reads: 

ὐ ὴ ὐὴ Ὑὴ ὒὛὴ 

For solving the optimization problem we choose a hybrid global algorithm combining Particle 
Swarm Optimization algorithm (PSO) for global search of the parameter space and 
Generalized Pattern Search (GPS) for continuing the search on the local level. It is 
performed in GenOpt [20], an optimization program specialized for the minimization of a cost 
function which is evaluated by an external simulation program and where the derivatives of 
the cost function are not available. PSO is an iterative method which solves the optimization 
problem by finding an improved solution population at each step. Each population is divided 
in to neighbourhoods and each particle of the population has its speed and direction, which 
are determined by the rate at which it is ñlearningò from own experience, from the 
neighbourhood and from the whole population. Starting population is generated by the initial 
guess and a random distribution in the parameter space. The reason why this hybrid 
algorithm is appropriate for our problem is that we have a large number of model parameters 
and thus a large parameter space. In such cases, the number of simulations to perform a 
good exploration of the parameter space grows exponentially, and the chances that we find 
only a local optimum which is far away from the global one is increasing. Due to PSO being a 
global optimization algorithm, it is less likely to end-up at a local minimum or at a 
discontinuity far from a solution, compared to using only GPS. 
 
In addition, there are following issues to consider: 

¶ The calibration of the two dwellings F1/D1 and F4/D1 cannot be fully decoupled. The 
reason for this is that all dwellings share the same construction parameters for the external 
walls, floors and ceilings, where we reasonably assume that the same materials have been 
used for each floor of the building. Therefore, although the number of occupants 
(Number_Occ), infiltration parameters (Inf_Closed, Inf_Open, Inf_Swing), window type, 
shading parameters (Shading, Shading_Temp) vary between dwellings, the parameters 
Cond_1, Cond_2 and Cond_3 remain the same. 

¶ Parameter denoted by Setpoint_Nei is the heating set-point in the adjacent dwellings. 
Since each dwelling is adjacent to at least two other dwellings, this heating set-point 
actually represents the average of the heating set-points across the adjacent dwellings, 
taking into account the area of the adjacent surfaces. This is a very influential parameter 
for the heating demand, however it has not been monitored in our case. The problem which 
may occur under circumstances is that we end-up with calibrated models with large 
neighbouring temperature variance, where neither represents the reality. This is due to the 
fact that the neighbouring temperature can be easily counterbalanced by infiltration 
parameters, but also construction parameters producing calibrated outputs. This would 
introduce high uncertainty into the model and result in unreliable retrofit saving estimates. 
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Based on these observations, we follow the following procedure: 

¶ First we calibrate the dwelling F4/D1, since we have monitoring data of the F3/D1, including 
its IAT, which is taken as the heating set-point temperature of the dwelling adjacent below 
for F4/D1. Above the F4/D1 there are no adjacent dwellings, only the roof. Therefore, from 
the total of 38.5 m² of adjacent surfaces, we have correct boundary conditions for 28.6 m². 
For the remaining adjacent surface of 9.9 m², we use the unknown parameter Setpoint_Nei. 
However, it can be shown that the influence of this parameter is drastically decreased due 
to surface reduction. Therefore an average set-point of 18.5°C was taken and the 
parameter was excluded from calibration. Thereby, the parameter uncertainty for F4/D1 
has been reduced, while for F1/D1 we still have 67.2 m² of adjacent surfaces with unknown 
heating set-point. 

¶ Once we have obtained the calibrated models for F4/D1, we adopt the identified 
construction parameters Cond_1, Cond_2 and Cond_3 in the model for F1/D1, thus 
reducing the total number of calibration parameters. We conclude by identifying a number 
of calibrated models for F1/D1 by solving the corresponding optimization problem. 

The cost function involves the sum over the course of the simulation with a few exceptions. 
Those periods when the heating demand sensor was not communicating with the data logger 
were left out of the summation, since they would have effectively made the cost function more 
sensitive to the time-step prior to the loss of communication, because the same error would 
have persisted throughout the whole period. The cost function was adapted as follows: 

 ὐ ὴ   ύ ὗ ȟ ὗ ȟ  ύ Ὕ ȟ Ὕ Ȣ Ὑὴ ὒὛὴ 

Here  is a binary time function setting the heating demand error calculation to zero during the 
previously mentioned periods.  

These periods are defined in Table 11 for F1/D1 and in Table 12 for F4/D1. 

 

Table 11: Periods When  = 0 in the F1/D1 Model 

Time Start (hr) Time End (hr) Reason 

7842 7937 Lost heat sensor communication 

8110 8155 Lost heat sensor communication 

8345 8386 Lost heat sensor communication 

8512 8939 Lost heat sensor communication 

 

Table 12: Periods When  = 0 in the F4/D1 Model 

Time Start (hr) Time End (hr) Reason 

6967 7412 Lost heat sensor communication 

7890 7940 Lost heat sensor communication 

8344 8387 Lost heat sensor communication 
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GenOpt provides several different algorithms for minimizing the cost function. There currently 
is not a consensus in the building simulation community on the topic of which algorithm is best, 
but it is common among the building model calibration community to use the hybrid Particle 
Swarm Optimization / Generalized Pattern Search (PSOHJ) algorithm [17]. In addition to that 
algorithm, there are the base Particle Swarm Optimization (PSO) and Generalized Pattern 
Search (HJ) algorithms which present reasonable options, but we will consider only the 
PSO/GPS hybrid algorithm since it performs a global search and it combines the advantages 
of the both algorithms. PSO and PSOHJ explore the parameter space far more thoroughly 
than HJ. These results imply that HJ may miss a global minimum. 

However, in a highly undetermined model, this may not be a problem and HJ optimizations 
may return models that meet the calibration criteria. Additionally, because HJ searches a 
smaller parameter space it seems reasonable to think that it is appropriate for calibrations only 
when the parameters are quite well known or the parameter space is small. The PSO and 
PSOHJ algorithms, when performed by GenOpt, run a number of simulation equal to the 
number of available processor in parallel, while the HJ algorithm performs one simulation at a 
time. The average simulation time (for the given calibration period) was three minutes, where 
the computer performing the optimizations was a quad-core using Intel i5 1.9 GHz processors 
with 8 GB of RAM. Decreasing the load to one simulation at a time reduced the run time to two 
minutes. The optimizations using PSO and PSOHJ algorithms in general perform more 
simulations, which allows them to search the parameter space more thoroughly than the HJ 
algorithm. The PSOHJ algorithms usually used about 1800 simulations, which corresponds to 
approximately 21 hours of computational time. 

 

3.4.3 Uncertain parameters 

Building construction 

The specifications on the building envelope (layers, dimensions, characteristics, openings) and 
the building plans are taken as reported in [24]. Still, some information are uncertain or missing 
and will be taken as the unknown model parameters in the calibration process. For instance, 
during the energy audit, there were two types of windows reported in the building (single- and 
double-pane windows), however, it is unknown exactly which of these two are installed in the 
dwellings F1/D1 and F4/D1. 

All uncertain parameters related with building construction can be found in Table 13. Each 
parameter has been reported with a realistic value range and if possible the expected value. 
The thermal conductivity of the cast concrete layer is unknown since these walls are carriers 
and are reinforced with steel construction. The same holds for the interior carrier walls, floors, 
ceilings and the roof. For windows we do not consider continuous U-values and transmissivity 
coefficients, but we choose four realistic predefined candidates. The range for solar energy 
transmittance of glass identified during the audit was 0.7 ï 0.81 [24]. 
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Table 13. Uncertain building construction parameters 

Parameter Description 
Energy audit 
estimate 

Realistic parameter 
range 

Inf_Open 
Total infiltration in the 
dwelling when the 
windows are open 

N/A 0.5-5 ACH 

Inf_Closed 
Total infiltration in the 
dwelling when the 
windows are closed 

0.2-0.3 0.1-0.7 ACH 

Inf_Str 
Total infiltration in the 
dwelling through the 
staircase 

0.12 0.1-0.85 ACH 

Cond_1 

Conductivity of the 
cast concrete layer 
which is found in 
external walls  

1.13 W/mK 0.57 ï 2.2 W/mK 

Cond_2 

Conductivity of the 
concrete layer which 
is found in the 
ground floor, interior 
partitions between 
dwellings and interior 
floors 

1.13 W/mK 0.57 ï 1.8 W/mK 

Cond_3 
Conductivity of the 
concrete layer which 
is found in the roof 

1.13 W/mK 0.57 ï 1.8 W/mK 

Cond_Frame 
Conductivity of the 
window frame 

5.18 W/mK 4.49 ï 5.88 W/mK  

Window 
Type of windows 
installed 

Type1 

Single-
pane 

U=6.11 
W/ m2K, 
G=0.81 

Win1 
U=5.68 W/ 
m2K, G=0.85 

Win2 
U=5.61 W/ 
m2K, G=0.82 

Type 2 

Double-
pane 

U=2.7 W/ 
m2K, 
G=0.7 

Win3 
U=2.83 W/ 
m2K, G=0.76 

Win4 
U=2.76 W/ 
m2K, G=0.76 
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Occupancy schedule 

All uncertain occupancy parameters used in the model are given in Table 14. Since each 
window in the building has roller blinds, and some windows even have awnings and/or textile 
curtains, shading needs to be included in the model. However, there are no measurements 
identifying the occupantsô use of blinds. Therefore we introduce a shading model based on an 
on/off differential controller which takes into account the indoor air temperature and solar 
radiation on the windows. Also we introduce an additional infiltration parameter during the 
swing period for the dwelling F1/D1 to obtain a more detailed infiltration model (infiltration will 
be discussed in more detail in Section 4.2).  

All occupancy parameters, window type and infiltration coefficients are to be determined for 
F1/D1 and F4/D1 separately, while the remaining construction parameters are considered to 
be same for both dwellings. 

 

Table 14.Uncertain occupant parameters 

Parameter Description 
Energy audit 
estimate 

Realistic 
parameter 
range 

Number_Occ 

Scalar used to adjust the number of 
occupants in the occupancy profile 
specified in Table 6, may not be a 
whole number 

1 0.5-2.5 

Setpoint_Nei 
Heating set-point used in the 
neighbouring dwelling 

N/A 17-24°C 

Shading_Temp 

Lower temperature limit for the 
indoor temperature when the 
shading is activated (where 200 W 
is the radiation limit for activation of 
the shading)  

N/A 23-30°C 

Shading Shading coefficient  N/A 0.5-0.95 % 

Inf_Swing 

Total infiltration in the dwelling 
during swing periods which 
describes how often the occupants 
open the windows 

N/A 0.1-2 ACH 

 

Heating and cooling set-points 

Set-point temperature is almost always the most influential parameter when considering 
building energy consumption. Small errors in approximation of the set-point value, can lead to 
great errors of the total consumption. In order to match the measured data through calibration, 
inaccurate estimation of the set-point value can lead to inaccurate values of other parameters 
(fake factor), thus obtaining a model which may satisfy the calibration criteria but does not offer 
a good representation and prediction of the building. Having the information on the set point 
values during the measured period can help to identify some patterns in occupantsô behaviour, 
identify set-point distribution function and possibly make a probabilistic prediction of the set-
point over some future time interval.  
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When the set-point value is not available, the best approximation is taking indoor air 

temperature as the heating set-point: Ὕ Ὕ , and assume ideal heating in the calibration 
process. Thus the calibration error of the remaining parameters, which is a result of inaccurate 
set-point value, is reduced. However, we need to bear in mind that this approximation leads to 
a model where the indoor air temperature matches the heating set-point, and thus the influence 
of the other parameters on the IAT might not be well-represented.  

3.5  Local sensitivity study of calibration results  

A local sensitivity study was performed to identify the impact of small perturbations in all 
variables starting from the calibrated models. This information can be used to identify which 
parameters are the most important in a calibration, and where the most effort should be 
applied. To ensure that the sensitivity study results were local, perturbations of ±5% were used. 
If a 5% perturbation, in either direction, resulted in a parameter being out of the limits specified 
in Chapter 4 then no simulation was performed. Two different sensitivity studies were 
performed. They are: 

¶ A study of the calibration parameters, using the indoor air temperature as the set 
temperature in the model. 

¶ A study of the set temperature model, using the set temperature profiles described in 
Sections 5.1 paragraph 5.1.1. 

 

The sensitivity of the models to each parameter was identified by studying the change in 
energy demand, and the change in monthly CVRMSE. Both parameters were examined using 
the absolute value of the change, and the change as a percentage of the result from the 
calibrated model.  

The sensitivity study was performed for dwelling F1/D1 and F4/D1 independently. 

3.6  Validation phase  

The validation of the identified models is an important phase of the calibration process. 
Therefore, we have divided our measurement period in two parts: calibration period and 
validation period (division is specified in Table 32). While it is clear that the prediction of the 
identified models closely fits the measurements on the calibration period due to the 
optimization procedure, validation allows us to test how well our models predict the demand 
on a new set of data, i.e. validation period. The models will be evaluated based on the monthly 
CVRMSE and NBME as well as average absolute error for the total heating demand and the 
temperature. For the validation of the models of both dwellings, we have used the criteria 
specified in the Table 15. 

Table 15. Criteria for the validation of models 

Monthly 
NMBE (%) 

Monthly 
CVRMSE (%) 

Average absolute 
temperature error (°C) 

< ±10 < 15 < 1.5 
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4 Results of the pre-retrofit building calibration 

Monitoring is a very important aspect of building energy model calibration. Data quality, data 
resolution, time intervals at which data was collected, total duration of measurement, choice 
of measured data and sensor positioning are only some of monitoring aspects which have a 
large influence on the calibration procedure and final results. Recommended monitoring 
guidelines for calibration of the energy model are given in [10]. More detail on data monitoring 
for the demo case and other buildings studied as part of the iNSPiRe project can be found in 
[25]. Available measurements and data resolution have been summarized in Table 7 and Table 
8. Collected data will be used in the calibration and validation process of the building energy 
model. The three main aspects of analysing the data included: 

1. Identify the quality of the data - Before using the data for calibration and validation, they 
were carefully examined to ensure that all values were valid, and to check if there are any 
important data missing. 

2. Investigate occupant behaviour - The data were studied to identify occupant behaviour, 
and any trends that could be incorporated in the model. 

3. Determining how to use the data optimally - While investigating the quality of the data and 
the occupant behaviour, strategies for incorporating the data into the simulation model and 
calibration effort were developed. 

 

Apart from space heating load and indoor air temperatures, the most important data points for 
modelling and calibration procedure are the indoor CO2 concentration, solar radiation, ambient 
temperature and electric energy load. 

4.1  Pre-retrofit b uilding e nergy use  

In this subsection, we want to give a preliminary estimate for the total energy use of the building 
based on utility bills prior to energy retrofit. Energy needs in the study case building can be 
divided into heating, cooling, DHW and household appliances (which also include lighting). 
Type of energy used to cover energy needs varies largely from dwelling to dwelling. More 
precisely, for DHW most dwellings use gas, however some use also butane bottles. 
Combinations of gas boilers, electric heaters and split units are used for heating, while for 
cooling only split units are used. More details per dwelling can be seen in Table 16 and Table 
17. In order to make preliminary estimates on the pre-retrofit total energy use of the building, 
utility bills have been collected over three years (for 2012, 2013 and 2014). However, 
occupants could not provide with a complete set of data, therefore some figures have been 
estimated. 

 

4.1.1 Utility bills analysis 

Contained in the energy bills, utility companies provide with monthly or bi-monthly consumption 
information for each dwelling. The collected data is summarized in annual consumption figures 
in Table 16 for electricity and Table 17 for gas consumption for years 2012, 2013 and 2014.  
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Table 16. Electricity usage and annual consumption per dwelling 

Apartment Yearly consumption [kWh] 

Electricity usage 2012 2013 2014 Average 

F0/D1 
household appliances, el. 
heater 2299 2115 1663 2025 

F0/D2 
household appliances, split 
unit for cooling 1613 1335 1352 1433 

F1/D1 household appliances  1244 1305 1474 1341 

F1/D2 
household appliances, el. 
heater  3911 4342 3095 3783 

F2/D1 

household appliances, el. 
heater, split unit for 
cooling  1231 1222 1189 1214 

F3/D1 household appliances  2095 1525 2135 1918 

F4/D1 household appliances  1941 1813 1888 1881 

F4/D2 household appliances  1591 1591 1591 1696 

Total 15925 15248 14387 15292 
 

 

Figure 6. Electricity consumption for each dwelling obtained from the utility bills over three years 

 

Figure 6 shows electricity consumption for each dwelling in the building for each of the three 
years, taken from the utility bills. In Table 16 and Table 17, figures stated in red are estimated 
for those years when some of the utility bills are missing and have been linearly extrapolated 
from the available data. 
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Data points present total consumption summed over two months. As expected, dwelling F1/D2 
has the largest consumption in winter, since it is the only dwelling heated solely with an electric 
heater. Dwelling F0/D1 has second largest winter consumption due to using an electric heater 
in addition to gas. Further, it can be seen that electricity consumption for F4/D1 and F2/D1 has 
peaks in summer months due to split unit consumption for cooling. Despite having split unit 
installed, based on these data, occupants in F0/D2 do not seem to use it for cooling, instead 
the consumption peaks in winter, and hence we can deduce that in addition to gas, the 
occupants occasionally use the split unit for heating. The occupants in F3/D1 also have high 
consumption although they use electricity only for household appliances. DHW consumption 
of this dwelling is also substantially larger than in the other dwellings. The reason for this is 
that the family living there comprises of five members (see Table 6). This confirms that the 
number of occupants is also a very influential factor when estimating total energy consumption 
of a dwelling. 

 

Table 17. Gas usage and annual consumption per dwelling 

Apartment Yearly consumption [kWh] 

Gas usage 2012 2013 2014 Average 

F0/D1 heating, DHW 10860 9117 9996 9991 

F0/D2 heating, DHW 6078 6342 5127 5849 

F1/D1 heating, DHW 4777 6186.6 5073.16 5345.59 

F1/D2 DHW 621 588 659 622.67 

F2/D1 none 0 0 0 0 

F3/D1 DHW 1488 2635 3092 2405 
F4/D1 heating, DHW 10644 10252.5 8600 9832.167 

F4/D2 heating, DHW 3832 5190 4015 4345.667 

Total 38300 40311.1 36562.16 38391.09 
 

Table 17 shows gas consumption over three years, also obtained from provided utility bills. It 
confirms audit information that F1/D2 and F3/D1 use gas only for DHW. It can also be seen 
that the dwellings F0/D1 and F4/D1 have the highest consumption, followed by F0/D2 and 
F4/D2 (see Figure 7). This observation confirms the fact that the heating demand is highest 
for the last floor and the ground floor.  

In the next step, we derive preliminary estimations for the building space conditioning and 
DHW demand, based on the utility data, where we deduce approximate household appliances 
profile from the total electricity consumption and approximate DHW profile from total gas 
consumption for each dwelling. There does not seem to exist a seasonal pattern for the electric 
consumption of household appliances (based on observation of dwellings which use electricity 
for nothing else; F1/D1, F3/D1, F4/D1, F4/D2), hence we will assume that for the electricity 
use for household is equally distributed during the entire year for each dwelling in the building. 
Table 18 contains data on building energy demand studied for each dwelling separately, based 
on utility bills, including use of electricity, gas and butane bottles. Assumed gas boiler efficiency 
is 0.8 and 2.5 for split units. The DHW consumption of F2/D1 and heating consumption for 
F3/D1 are approximated based on average number of butane bottles reported by the 
occupants, and are marked in red.  
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Figure 7. Gas consumption for each dwelling obtained from the utility bills over three years 

 

Again, it is clear that the highest heating demand is on the fourth and ground floor, and lowest 
on the middle, second floor. Also the heating demand of the dwellings on the left side (D2) is 
significantly smaller than the demand of the dwellings right (D1). The reason is that these 
dwellings have less heat losses due to the house being attached to another apartment house 
on the left side. On the second floor, dwelling F2/D1 has a smaller heating consumption, due 
to central position, but possibly also due to lower heating set-point. The average estimated 
annual energy demand of the building amounts to 48488.28 kWh/y, from which 7005.99 kWh/y 
for DHW and 30912 kWh/y for heating and cooling. It should be kept in mind that these data 
represent demand for eight out of ten available dwellings in the building since two dwellings 
are empty. Hence with full occupancy the demand should be larger. These figures equal 
average annual demand of 121.22 kWh/m2y from which 94.79 kWh/m2y is for DHW, heating 
and cooling (95.86 kWh/m2y, 98.64 kWh/m2y and 89.88 kWh/m2y in 2012, 2013 and 2014, 
respectively).  

 

Table 18. Annual energy demand per dwelling estimated from utility bills 2012-2014 

Dwelling 
Demand [kWh] 

Energy use 
Year Annual 

average 2012 2013 2014 

F0/D1 

DHW 986 926 769 894 

Heating 7702 6368 7228 7099 

Cooling 0 0 0 0 

Household 1172 954 972 1033 

Total 9860 8248 8969 9026 

F0/D2 
DHW 630 526 415 524 

Heating 5467 5074 4719 5086 
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Cooling 0 0 0 0 

Household 1119 1124 939 1061 

Total 7216 6725 6073 6671 

F1/D1 

DHW 1131 1318 1213 1221 

Heating 2709 3631 2846 3062 

Cooling 0 0 0 0 

Household 1244 1305 1474 1341 

Total 5084 6254 5533 5624 

F1/D2 

DHW 497 470 664 544 

Heating 2503 2906 1659 2356 

Cooling 0 0 0 0 

Household 1408 1436 1436 1427 

Total 4408 4812 3759 4326 

F2/D1 

5I² 343 343 343 343 

Heating 1110 1128 1093 1110 

Cooling 676 638 590 635 

Household 514 506 529 516 

Total 2643 2613 2554 2603 

F3/D1 

DHW 1190 2108 2474 1924 

IŜŀǘƛƴƎ 1233 1233 1233 1233 

Cooling 0 0 0 0 

Household 2095 1525 2135 1918 

Total 4518 4866 5842 5075 

F4/D1 

5I² 1160 1154 1149 1154 

IŜŀǘƛƴƎ 7356 7048 5731 6711 

Cooling 558 358 568 494 

Household 1718 1670 1661 1683 

Total 10791 10230 9109 10043 

F4/D2 

DHW 322 499 389 403 

Heating 2774 3727 2874 3125 

Cooling 0 0 0 0 

IƻǳǎŜƘƻƭŘ 1591 1591 1591 1591 

Total 4687 5818 4854 5119 

Whole building (8 
apartments) 

DHW 6259 7345 7415 7006 

Heating 30853 31115 27382 29783 

Cooling 1234 995 1158 1129 

Household 10862 10111 10738 10570 

Total 49207 49566 46692 48488 
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Given in Table 19 is the summary of the buildingôs energy use in terms of primary energy. 

Assumed ὅὉὈ  for gas and electricity is 1.195 and 2.461 respectively [33] This amounts to 
primary energy of 26.68 kWh/m2y for DHW and 126.64 kWh/m2y for space conditioning. 

In the remaining chapters of this report, we will improve these pre-retrofit energy estimations 
by calibrating the energy simulation model of the building and estimating the total energy 
savings. 

 

Table 19. Annual primary energy per dwelling based on utility bills 2012-2014 

Dwelling 
 Primary energy [kWh/y ] 

Energy use 
Year Annual 

average 2012 2013 2014 

F0/D1 

DHW 1472 1381 1147 1334 

Heating 14738 12460 12775 13325 

Cooling 0 0 0 0 

Household 3373 2746 2798 2972 

Total 19583 16587 16720 17630 

F0/D2 

DHW 941 786 620 782 

Heating 7737 7393 6690 7274 

Cooling 0 0 0 0 

Household 3221 3235 2703 3053 

Total 11899 11414 10013 11109 

F1/D1 

DHW 1688 1967 1810 1822 

Heating 4015 5420 4247 4561 

Cooling 0 0 0 0 

Household 3582 3756 4242 3860 

Total 9285 11143 10300 10243 

F1/D2 

DHW 741 702 990 811 

Heating 7204 8363 4774 6780 

Cooling 0 0 0 0 

Household 4053 4133 4133 4107 

Total 11998 13198 9898 11698 

F2/D1 

5I² 511 511 511 511 

Heating 1283 1329 1220 1277 

Cooling 778 734 679 730 

Household 1480 1455 1522 1486 

Total 4053 4029 3933 4005 

F3/D1 

DHW 1777 3146 3692 2872 

IŜŀǘƛƴƎ 1840 1840 1840 1840 

Cooling 0 0 0 0 

Household 6029 4389 6145 5521 

Total 9646 9375 11677 10233 



 

 

 

 

www.inspirefp7.eu   Page 32 of 124 

F4/D1 

5I² 1988 2081 2014 2028 

IŜŀǘƛƴƎ 10721 10160 8255 9712 

Cooling 642 412 653 569 

Household 4944 4807 4781 4844 

Total 18295 17460 15703 17153 

F4/D2 

DHW 480 476 580 512 

Heating 4095 5451 4214 4587 

Cooling 0 0 0 0 

IƻǳǎŜƘƻƭŘ 4579 4579 4579 4579 

Total 9154 10506 9373 9678 

Whole building (8 
apartments) 

DHW 9599 11051 11365 10672 

Heating 51635 52416 44016 49355 

Cooling 1420 1145 1333 1299 

Household 31261 29099 30904 30421 

Total 93915 93712 87616 91748 

4.2  Monitoring data  

The goal of this section is to analyse the completeness of monitoring data and their credibility. 
Although dwelling F3/D1 was monitored together with F1/D1 and F4/D1, it is considered 
inadequate for this study. In particular, its heating energy consumption is unknown, since there 
were two butane heaters used for heating. Only available information is an estimate that the 
occupants use approximately 1.5 bottles of butane each month, which is not precise enough 
for a model calibration. Without adequate data, F3/D1 is excluded from the calibration study. 

 

4.2.1 Data quality 

Sensor communication 

The monitoring data for calibration and validation of the pre-retrofit energy model was collected 
from 5 August 2014 (hour 5185) to 1 September 2015 (hour 14593). During such long 
monitoring period, it is possible to encounter data logger failures in which case no data is 
reported for some time periods. Also communication failures between the data logger and 
certain sensors are possible. It is necessary to identify and remove these communication loss 
periods from the calibration and validation procedure. The periods for which the data logger 
does not report any measurements are given in Table 20. In addition, Figure 8 illustrates a 
data sample for dwelling F1/D1 where three communication loss periods between data logger 
and heating energy consumption sensor can be clearly identified. 

The figure illustrates data from November 8th (Time = 7508 hr) to January 10th (Time = 9008hr). 
The period from December 13th (Time = 8322 hr) to December 15th (Time = 8363 hr) when no 
data is reported (see Table 20) can be recognized by constant values of IAT, OAT and 
cumulative heating demand. 
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Table 20. Monitoring data gaps from 5 August 2014 to 1 September 2015 (in hours) 

Gap start [hr] 6291.5 8289.75 8322 9878.5 9900.75 10851 

Gap end [hr] 6425.5 8289.75 8363 9878.5 9900.75 10851.75 

       Gap start [hr] 11242.5 11246 11279.75 12630.25 12630.25 13166.5 

Gap end [hr] 11242.5 11246 11289.25 12630.5 12630.5 13166.5 

       Gap start [hr] 13290.5 13331.5 13910.25 13932.25 13985.5 14100.5 

Gap end [hr] 13290.75 1332.75 13911 13935 13986 14100.5 

 

 

Figure 8: Evidence of Intermittent Sensor Communication (F1/D1) 

 

Another period when the measured cumulative heating demand is constant is from December 
20th (Time = 8489 hr) to January 7th (Time = 8915 hr). During this time period, the electric meter 
implies that the occupants were home and the indoor air temperature implies that the 
occupants used the heat (since the outdoor air temperature was commonly below 5°C). At the 
same time, the data logger recorded no heating energy consumption, hence we assume that 
the data logger and heating energy consumption sensor were not communicating during this 
period. These kind of data gaps were excluded from calibration and validation procedures. 

Similarly to dwelling F1/D1, data analysis for F4/D1 revealed that the heat sensor stopped 
communicating for several periods during the monitored period, as can be observed in Figure 
9, which shows measurement data from October 11th (hour 6800) to February 15th (hour 9863).  
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Figure 9. Sensor Communication for the Heating Season (F4/D1) 

 

A period where the sensor possibly lost communication, occurred from 7890 to 7940 hr. No 
heating energy demand was identified during this time; however, the space also became much 
cooler during this period. It is possible that the heat was turned off, but there is a small period 
from hr 7915 to hr 7920 where the space temperature stopped decreasing. Itôs possible that 
the heat was active during that minor window. Electric meter suggests that in this period the 
occupants were home. Since it cannot be determined if heating was actually used or not, this 
period was also removed from the study. 

 

Solar data 

Data analysis showed that the some of the measured solar data was inconsistent. While the 
data at the start of the measurement period was realistic, the data later on proves that the 
measurements were improperly performed. By hour 6200, the measurement for diffuse 
radiation was consistently higher than the measurement of global radiation. This can be seen 
in Figure 10.  

Through investigation of the installation of the weather station, it was determined that the 
diffuse radiation measurement was both improperly installed and never calibrated. As a result, 
the diffuse radiation measurement could not be used, but the global radiation measurement 
was deemed acceptable (Figure 10). 

 


















































































































































































